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Motivation

spin sum rule
1

2
=

∑

q

1

2
∆q + Lq + ∆g + Lg

know that
∑

q ∆q small (−→ “spin crisis”) and that |∆g| ≤ g

How large is Lq?

today: constraints on Lq from κ 6= 0
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The anomalous magnetic moment

Matrix element for the Pauli form factor F2 involves nucleon
spin-flip

〈

P+∆,↑
∣

∣q̄γ+q
∣

∣P,↓
〉

= −
∆x−i∆y

2M
F2

→֒ initial and final state differ by one unit of angular momentum

q̄γ+q chirally even (does not flip quark helicity)

q̄γ+q acts only on quarks

→֒ quark orbital angular momentum (OAM) must change by one unit
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The anomalous magnetic moment

Overlap integral representation (light-cone wave functions) for F2

requires interference between wave function components that
differ by one unit of OAM

→֒ κ ≡ F2(0) 6= 0 ⇒ nucleon must have LC-wave function
components with Lz 6= 0.

→֒ LC wave function models ⇒ constraints on wave function
components with Lz 6= 0

today: attempt to formulate model-independent constraints on Lz
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The GPD E(x, 0, 0)

Matrix element for generalized parton distribution Eq(x, 0,−∆2
⊥)

involves nucleon spin-flip (F2 =
∫

dxE)

〈P+∆,↑|Oq(x,0⊥)|P,↓〉 = −
∆x−i∆y

2M
Eq(x,0,−∆2

⊥)

Oq(x,b⊥) =

∫

dx−

4π
eip+x−xq̄

(

0−,b⊥

)

γ+q
(

x−,b⊥

)

→֒ initial and final state differ by one unit of angular momentum

Oq chirally even (does not flip quark helicity)

Oq acts only on quarks

→֒ quark orbital angular momentum (OAM) must change by one unit
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The GPD E(x, 0, 0)

Overlap integral representation (light-cone wave functions) for
Eq(x, 0, 0) requires interference between wave function
components that differ by one unit of OAM (Brodsky, Diehl,..)

→֒ Eq(x, 0, 0) 6= 0 ⇒ nucleon must have LC-wave functions
components with Lz 6= 0.

→֒ LC wave function models ⇒ constraints on wave function
components with Lz 6= 0

today: attempt to formulate model-independent constraints on Lz
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OAM decomposition for E(x, 0, 0)

consider nucleon localized in ⊥ direction

∣

∣p+,R⊥, ↓
〉

= N

∫

d2p⊥

∣

∣p+,p⊥, ↓
〉

introduce quark field operators in impact parameter space

q(xp+,b⊥, λ) =
∫

dx−eip+x−xq+(x−,b⊥, λ)

convenient representation for E(x, 0, 0)

〈

p+,R⊥, ↑
∣

∣B+
q (x)

∣

∣p+,R⊥, ↓
〉

=
1

2M
Eq(x, 0, 0).

with

B+
q (x) ≡

∑

λ

∫

d2b⊥ (bx + iby) q†(xp+,b⊥)q(xp+,b⊥, λ)
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OAM decomposition for E(x, 0, 0)

perform angular decomposition

b†(xp+,b⊥) =
∑

m

b†m(xp+,b⊥)

where

b†m(xp+,b⊥) = eimφb

∫ 2π

0

dφ′b
2π

e−imφ′

bb†(xp+,b′
⊥)

Polar coordinates bx = |b⊥| cosφ and by = |b⊥| sinφ, and
b′x = |b⊥| cosφ′b and b′y = |b⊥| sinφ′b respectively.

In this basis, it becomes obvious that Bq
+ changes quark OAM by

one unit

B
q
+ =

∑

m

∫

d2b⊥ (bx + iby) b†m+1(xp
+,b⊥)bm(xp+,b⊥).
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OAM decomposition for E(x, 0, 0)

Apply Cauchy-Schwarz inequality (〈ψ|φ〉 ≤
√

〈ψ|ψ〉〈φ|φ〉) to matrix
element for Eq(x, 0, 0)

Eq(x, 0, 0)

2M
=

∑

m

∫

d2b⊥ (bx + iby) 〈↑| b†m+1(xp
+,b⊥)bm(xp+,b⊥) |↓〉

≤
∑

m

∫

d2b⊥ |b⊥|
√

〈↑| b†m+1(xp
+,b⊥)bm+1(xp+,b⊥) |↑〉

×

√

〈↓| b†m(xp+,b⊥)bm(xp+,b⊥) |↓〉

next we apply the Cauchy-Schwarz inequality
(
∑

m ambm ≤
√

(
∑

m amam) (
∑

n bnbn) to the integral/sum ....

Aspects of Quark Orbital Angular Momentum – p.9/23



OAM decomposition for E(x, 0, 0)

Application of the CS-ineq. to above integral/sum yields

Eq(x, 0, 0)

2M
≤

∑

m≥0

√

q
↑
m+1(x)b

2,↓
m (x) +

∑

m<0

√

b
2,↑
m+1(x)q

↓
m(x)

= 2
∑

m≥0

√

q
↑
m+1(x)b

2,↑
−m(x)

distribution of quarks with Lz = m in target with spin ↑

q↑m(x) ≡

∫

d2b⊥

〈

p+,0⊥, ↑
∣

∣ b†m(xp+,b⊥)bm(xp+,b⊥)
∣

∣p+,0⊥, ↑
〉

b2
⊥ weighted distribution of quarks with Lz = m

b2
↑

m(x) ≡

∫

d2b⊥

〈

p+,0⊥, ↑
∣

∣ b†m(xp+,b⊥)bm(xp+,b⊥)
∣

∣p+,0⊥, ↑
〉

b2
⊥.
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OAM decomposition for E(x, 0, 0)

If one makes assumption that only m = 0 and m = 1 contribute
then

Eq(x, 0, 0)

2M
≤

∑

m≥0

2
∑

m≥0

√

q
↑
m+1(x)b

2,↑
−m(x)

reduces to
(

Eq(x, 0, 0)

4M

)2

≤ q
↑
1(x)b2,↑

0 (x)

without this assumption, apply CS ineq. again (to the sum),
yielding

(

Eq(x, 0, 0)

4M

)2

≤





∑

m≥0

q
↑
m+1(x)









∑

n≥0

b
2,↑
−n(x)



 = qLz≥1(x) b
2
Lz≤0(x).
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Discussion

Novel lower bound on wave function components with Lz 6= 0

(

Eq(x, 0, 0)

4M

)2

≤ qLz≥1(x) b
2
Lz≤0(x).

→֒ point-like nucleons (b2 → 0) cannot have a nonvanishing
anomalous magnetic moment (see also Brodsky & Schlumpf)

depending on the ⊥ size, can make prediction for Lz 6= 0

qLz≥1(x)

q(x)
≥ few %

κ 6= 0 and qLz≥1(x) = 0 only possible for b2 → ∞

numerical size of lower bound disappointlingly small even though
κ is large, since κ arises from s-p interference (linear in p-wave
component), while qLz=1(x) involves the square of the p-wave
component
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Discussion

→֒ compare: tiny d-wave component in deuterium leads to relatively
large quadrupole moment.

Still possible: maybe stronger inequalities can be derived is
CS-ineq. is applied less often...
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How about SSAs?

use factorization (high energies) to express
momentum distribution of outgoing π+ as
convolution of

momentum distribution of quarks in
nucleon

→֒ unintegrated parton density q(x,k⊥)

momentum distribution of π+ in jet
created by leading quark q

→֒ fragmentation function Dπ+

q (z,p⊥)

e
e′

π+

q(x,k⊥)

Dπ+

q (z,p⊥)

p

q

average ⊥ momentum of pions obtained as sum of
average k⊥ of quarks in nucleon (Sivers effect)
average p⊥ of pions in quark-jet (Collins effect)
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How about SSAs?

situation for SSA very similar:
described by matrix element of chirally even operator
nucleon spin flip

same wave function components that enter overlap representation
for κ also enter in overlap rep. for SSA (Brodsky, Hwang, Schmidt)

q(x,k⊥) ∝

∫

dξ−d2ξ⊥

(2π)3
eip·ξ

〈

P, S
∣

∣q̄(0)U[0,∞]γ
+U[∞,ξ]q(ξ)

∣

∣P, S
〉∣

∣

ξ+=0

with U[0,∞] = P exp
(

ig
∫ ∞

0
dη−A+(η)

)

does measurement of nonzero Sivers effect (HERMES) also
provide rigorous constraint on quark OAM?
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How about SSAs?

q(x,k⊥) ∝

∫

dξ−d2ξ⊥

(2π)3
eip·ξ

〈

P, S
∣

∣q̄(0)U[0,∞]U[∞,∞]γ
+U[∞,ξ]q(ξ)

∣

∣P, S
〉∣

∣

ξ+=0

with U[0,∞] = P exp
(

ig
∫ ∞

0
dη−A+(η)

)

operator describing SSA involves acts on both quarks and glue

→֒ either quark OAM or gluon OAM (or both) can change in the
matrix element

→֒ SSA can arise from interference between wave function
components differing in either Lq or Lg (or both)

Even though model builders agree that Sivers requires some form
of quark OAM, unable to establish rigorous bound on Lq

Aspects of Quark Orbital Angular Momentum – p.16/23



How about SSAs?

q(x,k⊥) ∝

∫

dξ−d2ξ⊥

(2π)3
eip·ξ

〈

P, S
∣

∣q̄(0)U[0,∞]U[∞,∞]γ
+U[∞,ξ]q(ξ)

∣

∣P, S
〉∣

∣

ξ+=0

with U[0,∞] = P exp
(

ig
∫ ∞

0
dη−A+(η)

)

However, if FSI is treated in perturbation theory (Brodsky, Hwang,
Schmidt), Aµ expressed in terms of color charge density of quarks

→֒ SSA expressed in color-density-density correlations in ⊥ plane
(MB, hep-ph/0311013)

→֒ apply to valence wave functions

→֒ again find that Lq 6= 0 is essential

Aspects of Quark Orbital Angular Momentum – p.17/23



Summary

κ 6= 0 requires wave function components with Lq 6= 0

derived model independent lower bound on distribution of quarks
with Lz 6= 0

(

Eq(x, 0, 0)

4M

)2

≤ qLz≥1(x) b
2
Lz≤0(x).

no rigorous statement on net Lq

nonzero Sivers (HERMES) proves that there must be nonzero
wave function components with Lq + Lg 6= 0

However, strictly speaking, no rigorous bound on Lq alone from
Sivers

for those interested in even more details ...
MB + G.Schnell, hep-ph/0510249.
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OAM decomposition for E(x, 0, 0)

Apply Cauchy-Schwarz inequality to matrix element for Eq(x, 0, 0)

Eq(x, 0, 0)

2M
=

∑

m

∫

d2b⊥ (bx + iby) 〈↑| b†m+1(xp
+,b⊥)bm(xp+,b⊥) |↓〉

≤
∑

m

∫

d2b⊥ |b⊥|
√

〈↑| b†m+1(xp
+,b⊥)bm+1(xp+,b⊥) |↑〉

×

√

〈↓| b†m(xp+,b⊥)bm(xp+,b⊥) |↓〉

next we apply the Cauchy-Schwarz inequality to the integral/sum
....
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OAM decomposition for E(x, 0, 0)

Apply Cauchy-Schwarz inequality to matrix element for Eq(x, 0, 0)

Eq(x, 0, 0)

2M
=

∫

d2b⊥ (bx + iby) 〈↑| b†1(xp
+,b⊥)b0(xp

+,b⊥) |↓〉 + ...

≤

∫

d2b⊥ |b⊥|

√

〈↑| b†1(xp
+,b⊥)b1(xp+,b⊥) |↑〉

×

√

〈↓| b†0(xp
+,b⊥)b0(xp+,b⊥) |↓〉 + ...

next we apply the Cauchy-Schwarz inequality to the integral/sum
....
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OAM decomposition for E(x, 0, 0)

Apply Cauchy-Schwarz inequality to matrix element for Eq(x, 0, 0)

Eq(x, 0, 0)

2M
=

∫

d2b⊥ (bx + iby) 〈↑| b†0(xp
+,b⊥)b−1(xp

+,b⊥) |↓〉 + ...

≤

∫

d2b⊥ |b⊥|

√

〈↑| b†0(xp
+,b⊥)b0(xp+,b⊥) |↑〉

×
√

〈↓| b†−1(xp
+,b⊥)b−1(xp+,b⊥) |↓〉 + ...

next we apply the Cauchy-Schwarz inequality to the integral/sum
....
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OAM decomposition for E(x, 0, 0)

Apply Cauchy-Schwarz inequality to matrix element for Eq(x, 0, 0)

Eq(x, 0, 0)

2M
=

∫

d2b⊥ (bx + iby) 〈↑| b†2(xp
+,b⊥)b1(xp

+,b⊥) |↓〉 + ...

≤

∫

d2b⊥ |b⊥|

√

〈↑| b†2(xp
+,b⊥)b2(xp+,b⊥) |↑〉

×

√

〈↓| b†1(xp
+,b⊥)b1(xp+,b⊥) |↓〉 + ...

next we apply the Cauchy-Schwarz inequality to the integral/sum
....
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OAM decomposition for E(x, 0, 0)

Apply Cauchy-Schwarz inequality to matrix element for Eq(x, 0, 0)

Eq(x, 0, 0)

2M
=

∫

d2b⊥ (bx + iby) 〈↑| b†−1(xp
+,b⊥)b−2(xp

+,b⊥) |↓〉 + ...

≤

∫

d2b⊥ |b⊥|
√

〈↑| b†−1(xp
+,b⊥)b−1(xp+,b⊥) |↑〉

×
√

〈↓| b†−2(xp
+,b⊥)b−2(xp+,b⊥) |↓〉 + ...

next we apply the Cauchy-Schwarz inequality to the integral/sum
....
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